32 research outputs found

    Complex plane representations and stationary states in cubic and quintic resonant systems

    Full text link
    Weakly nonlinear energy transfer between normal modes of strongly resonant PDEs is captured by the corresponding effective resonant systems. In a previous article, we have constructed a large class of such resonant systems (with specific representatives related to the physics of Bose-Einstein condensates and Anti-de Sitter spacetime) that admit special analytic solutions and an extra conserved quantity. Here, we develop and explore a complex plane representation for these systems modelled on the related cubic Szego and LLL equations. To demonstrate the power of this representation, we use it to give simple closed form expressions for families of stationary states bifurcating from all individual modes. The conservation laws, the complex plane representation and the stationary states admit furthermore a natural generalization from cubic to quintic nonlinearity. We demonstrate how two concrete quintic PDEs of mathematical physics fit into this framework, and thus directly benefit from the analytic structures we present: the quintic nonlinear Schroedinger equation in a one-dimensional harmonic trap, studied in relation to Bose-Einstein condensates, and the quintic conformally invariant wave equation on a two-sphere, which is of interest for AdS/CFT-correspondence.Comment: v2: version accepted for publicatio

    A nonrelativistic limit for AdS perturbations

    Get PDF
    The familiar cc\rightarrow \infty nonrelativistic limit converts the Klein-Gordon equation in Minkowski spacetime to the free Schroedinger equation, and the Einstein-massive-scalar system without a cosmological constant to the Schroedinger-Newton (SN) equation. In this paper, motivated by the problem of stability of Anti-de Sitter (AdS) spacetime, we examine how this limit is affected by the presence of a negative cosmological constant Λ\Lambda. Assuming for consistency that the product Λc2\Lambda c^2 tends to a negative constant as cc\rightarrow \infty, we show that the corresponding nonrelativistic limit is given by the SN system with an external harmonic potential which we call the Schrodinger-Newton-Hooke (SNH) system. We then derive the resonant approximation which captures the dynamics of small amplitude spherically symmetric solutions of the SNH system. This resonant system turns out to be much simpler than its general-relativistic version, which makes it amenable to analytic methods. Specifically, in four spatial dimensions, we show that the resonant system possesses a three-dimensional invariant subspace on which the dynamics is completely integrable and hence can be solved analytically. The evolution of the two-lowest-mode initial data (an extensively studied case for the original general-relativistic system), in particular, is described by this family of solutions.Comment: v3: slightly expanded published versio

    Solvable cubic resonant systems

    Full text link
    Weakly nonlinear analysis of resonant PDEs in recent literature has generated a number of resonant systems for slow evolution of the normal mode amplitudes that possess remarkable properties. Despite being infinite-dimensional Hamiltonian systems with cubic nonlinearities in the equations of motion, these resonant systems admit special analytic solutions, which furthermore display periodic perfect energy returns to the initial configurations. Here, we construct a very large class of resonant systems that shares these properties that have so far been seen in specific examples emerging from a few standard equations of mathematical physics (the Gross-Pitaevskii equation, nonlinear wave equations in Anti-de Sitter spacetime). Our analysis provides an additional conserved quantity for all of these systems, which has been previously known for the resonant system of the two-dimensional Gross-Pitaevskii equation, but not for any other cases.Comment: v2: 23 pages, 1 figure, minor corrections, published versio

    Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates

    Full text link
    The Lowest Landau Level (LLL) equation emerges as an accurate approximation for a class of dynamical regimes of Bose-Einstein Condensates (BEC) in two-dimensional isotropic harmonic traps in the limit of weak interactions. Building on recent developments in the field of spatially confined extended Hamiltonian systems, we find a fully nonlinear solution of this equation representing periodically modulated precession of a single vortex. Motions of this type have been previously seen in numerical simulations and experiments at moderately weak coupling. Our work provides the first controlled analytic prediction for trajectories of a single vortex, suggests new targets for experiments, and opens up the prospect of finding analytic multi-vortex solutions.Comment: v2: minor improvements, published in PR

    Formation of singularities for equivariant 2+1 dimensional wave maps into the two-sphere

    Full text link
    In this paper we report on numerical studies of the Cauchy problem for equivariant wave maps from 2+1 dimensional Minkowski spacetime into the two-sphere. Our results provide strong evidence for the conjecture that large energy initial data develop singularities in finite time and that singularity formation has the universal form of adiabatic shrinking of the degree-one harmonic map from R2\mathbb{R}^2 into S2S^2.Comment: 14 pages, 5 figures, final version to be published in Nonlinearit

    Dispersion and collapse of wave maps

    Full text link
    We study numerically the Cauchy problem for equivariant wave maps from 3+1 Minkowski spacetime into the 3-sphere. On the basis of numerical evidence combined with stability analysis of self-similar solutions we formulate two conjectures. The first conjecture states that singularities which are produced in the evolution of sufficiently large initial data are approached in a universal manner given by the profile of a stable self-similar solution. The second conjecture states that the codimension-one stable manifold of a self-similar solution with exactly one instability determines the threshold of singularity formation for a large class of initial data. Our results can be considered as a toy-model for some aspects of the critical behavior in formation of black holes.Comment: 14 pages, Latex, 9 eps figures included, typos correcte

    Two infinite families of resonant solutions for the Gross-Pitaevskii equation

    Full text link
    We consider the two-dimensional Gross-Pitaevskii equation describing a Bose-Einstein condensate in an isotropic harmonic trap. In the small coupling regime, this equation is accurately approximated over long times by the corresponding nonlinear resonant system whose structure is determined by the fully resonant spectrum of the linearized problem. We focus on two types of consistent truncations of this resonant system: first, to sets of modes of fixed angular momentum, and second, to excited Landau levels. Each of these truncations admits a set of explicit analytic solutions with initial conditions parametrized by three complex numbers. Viewed in position space, the fixed angular momentum solutions describe modulated oscillations of dark rings, while the excited Landau level solutions describe modulated precession of small arrays of vortices and antivortices. We place our findings in the context of similar results for other spatially confined nonlinear Hamiltonian systems in recent literature.Comment: v2: published version (commentary added

    Ground state in the energy super-critical Gross-Pitaevskii equation with a harmonic potential

    Full text link
    The energy super-critical Gross--Pitaevskii equation with a harmonic potential is revisited in the particular case of cubic focusing nonlinearity and dimension d > 4. In order to prove the existence of a ground state (a positive, radially symmetric solution in the energy space), we develop the shooting method and deal with a one-parameter family of classical solutions to an initial-value problem for the stationary equation. We prove that the solution curve (the graph of the eigenvalue parameter versus the supremum) is oscillatory for d = 13. Compared to the existing literature, rigorous asymptotics are derived by constructing three families of solutions to the stationary equation with functional-analytic rather than geometric methods.Comment: 42 page

    Saddle point solutions in Yang-Mills-dilaton theory

    Get PDF
    The coupling of a dilaton to the SU(2)SU(2)-Yang-Mills field leads to interesting non-perturbative static spherically symmetric solutions which are studied by mixed analitical and numerical methods. In the abelian sector of the theory there are finite-energy magnetic and electric monopole solutions which saturate the Bogomol'nyi bound. In the nonabelian sector there exist a countable family of globally regular solutions which are purely magnetic but have zero Yang-Mills magnetic charge. Their discrete spectrum of energies is bounded from above by the energy of the abelian magnetic monopole with unit magnetic charge. The stability analysis demonstrates that the solutions are saddle points of the energy functional with increasing number of unstable modes. The existence and instability of these solutions are "explained" by the Morse-theory argument recently proposed by Sudarsky and Wald.Comment: 11 page
    corecore